[image: image1.png]tee
ChartPro

4.01 VCL version, October 1st 1998.

Dear Developer:

Thank You for programming with TeeChart Pro v4 !

See below complete information about TeeChart Pro 4.01 version.

New features, changes and bug fixes are documented here.

More than 80 new features ! There is also a list below of pending bugs.

Inprise (Borland) released Borland Delphi 4.0 on June-15th 1998.

The Delphi 4.0 Professional and Client / Server suites include a free TeeChart Standard v4.0.

The Standard version of TeeChart has a very small subset of the new features found in the Pro version,

and it also might have bugs that have been fixed since April 1998 in TeeChart Pro v4.01.

See the License.txt file for License, Disclaimer and Copyright information.

See also the new “Tee F.A.Q” database at our web site.

Thank You for TeeCharting and Best Regards !

David Berneda

www.teemach.com
[image: image2.emf]
Index:

· 1) What's New in this version?

·

 HIPERVÍNCULO \l "NewFeatures"

2) New features and changes

· 3) Advanced: Changes to protected sections
· 4) Fixed bugs since 3.0b version.
· 5) Pending tasks and known bugs
· Appendix: Virtual Canvas and OpenGL Canvas detailed.
1) What's New in this version?

Up
See also the “Changes.txt” file for modifications from v4.0 to v4.01.

3D improvements

· Improved 3D with rotation, elevation, scroll and zoom.

· 3D Perspective

· 3D OpenGL rendering.

· Create your own 3D rendering mechanism (for example VRML rendering, or DXF exporting).

· New visual component TDraw3D for 3D generic drawing (non-chart related).

· Faster drawing speed in most cases as now all drawings are performed directly to Windows GDI, bypassing the Delphi TCanvas when necessary.

· ZOrder position can now be set individually for every Series. Several Series can share the

same Z position (overlapping Series).

New Series types

· TRadarSeries (“spider” charts)

· TContourSeries (3D contouring)

· TPoint3DSeries (3D scatter with optional 3D lines)

· TBezierSeries (point smoothing)

· TErrorSeries (same as ErrorBar without Bars)

· TWindRoseSeries (a Polar Series with "Wind direction" labels)

· TClockSeries (a "live" clock)

All Chart components (TChart, TDBChart, TQRChart, TDecisionGraph...)

· A new Chart.DepthAxis to display labels (or Series titles) and ticks for the "Z" dimension in 3D mode.

· Retrieve Chart binary files from Internet URL addresses (LoadChartFromURL procedure)

· New BackWall sub-component, with 3D depth.

· New Gradient filling styles (From Center, From Corner)

· New events: “OnBeforeDrawAxes” and “OnBeforeDrawSeries”.

· Title and Foot accept now the Brush.Bitmap property to fill the background.

· New property: PrintProportional to match screen dimensions on paper.

· New boolean property for all Walls: Dark3D

· New "back Color" property for Title and Foot

Axes

·
Multi-Line Axis Labels with and without rotation, at design-time and runtime.

· Unlimited multiple axis, connected to a single or to many Series.

· All Axis (default and custom) can now be moved and stretched to any position

· Centered Axis Grid lines

· Axes can be displayed on top of Series
· Improved Logarithmic labelling and Logarithmic ticks.

· Logarithmic axis can now be Inverted
All Series

·
Virtual Value Lists to link custom Arrays of values to Series

· Added "AddNullXY" method for all Series

· Shadow color 3D effect in Line, Area, Point, etc Series.

· Series HorizAxis and VertAxis properties can now show both axes at the same time.

All Series Marks

· Custom positioning of Series Marks.

· Multi-line Marks text.

Fast-Line Series

·
Fast-Line option to draw new added points as fast as possible (15000 points per second on a P166, 20000 pps on a P200)

· Fast-Line can now show “Marks” .

Pie Series

·
Exploded Pie slices in both 2D and 3D, supporting rotation.

· Pie "Other" slice, grouping small slices into a single one.

· Pie Values Sorting (Ascending or Descending)

· Pie Brush can now be used with a TBitmap to fill the Pie slices.

Chart Legend

·
Legend has now a Clicked function to return the Legend item index under the mouse.

· Legend now has a Brush property, Brush.Bitmap can be used to fill the Legend.

· Top and Bottom Legend can now show multiple rows of items.

TDBChart

·
Series1.DataSource := DataSource1 for single-row (single-record) database charting.

· DBChart now uses the Delphi's TField "OnGetText" event.

· Null values in database fields are recognized and handled properly.

TQRChart (QuickReport Chart)

·
New “OnPrint” event, to allow customizing the chart resolution.

· The “Frame” property now displays and prints.

· Moved QRTee and QRTeeReg units to a new package: TeeQR.DPL

Line Series
· Line Series Height property, for 3D strip lines.

Bar Series

·
Bar and Horiz Bar Series can now be resized when zoomed (AutoBarSize property).

· BarBrush.Bitmap now can be used to fill the Bars.

Polar Series

·
New “Brush” property to fill the inside of Polar series. (Same for TRadarSeries)

· New "CircleLabels" property to draw labels around polar circle.

Gantt Series

·
Gantt points can be now customized using the OnGetPointerStyle event.

Candle Series

·
Candle points can now be displayed with 3D effect and dark sides.

Shape Series

·
New Shape styles (3D Cube, Pyramid, Invert.Pyramid, 2D Cross, Diag.Cross)

· Now Shapes origin can be expressed in axis values, while size expressed in pixels.

· Brush.Bitmap for customized pattern filling.

Surface Series

·
Surface series easier to use with auto XZ grid. Allow specific non-sorted XYZ points

· Legend now shows the Surface Palette

· Surface series not obligued to add all points (missing points are considered nulls).

· Surface holes using the AddNull method.

· Multiple-surfaces in the same chart.

· New OnGetColor event to supply custom colors for each Surface cell

· Surface can now be "Z Inverted" (switch to view from back) and "X" inverted.

· Increased maximum Surface size to 500x500 cells !

Editor Dialogs

·
Chart Editor now uses the TOpenPictureDialog Delphi's dialog.

· Print Preview now can optionally drag the Chart when resizing or moving.

· Print Preview shows automatic “Proportional” Chart margins.

· "Edit..." button for TeeFunctions at Editor dialog to modify the Function.Period and Range.

· New components: TChartEditor, TChartPreviewer to configure and show the Editor and Preview dialogs.

· Several new options at many editor dialogs to allow to use the new features.

· Multiple editor Forms per each Series !

Functions

·
Now the Function Period can be expressed in ranges (ie: Sum(Monthly) or Average(Weekly))

· Important: Changed how the "Period" is used in Moving functions.

· New TeeFunction “PeriodAlign” property, to align calculations.

· Functions can now calculate on any Value list (ie: “Close” , “High”, “Low” lists in Candle).

· Functions have now “BeginUpdate” and “EndUpdate” methods to optimize calculations.

· New TStdDeviationFunction.

· TTrendFunction is now much faster.

Other

· Pen.Style can now draw "small dots" like Windows Explorer TreeView.

· TChartScrollBar now installed by default. (It was optional in TeeChart 3.0)

· TeeComander component: A toolbar with buttons for 3D rotation, scroll, etc.

· TChartListBox component. A "ListBox" with automatic Series controls.

· TVolumeSeries style has now it’s own editor dialog.

· New procedure "ConvertTeeFileToText" (from file MyChart.tee to MyChart.txt).

· Big, big, big code re-organization and stream-lining (in major part because the new 3D features)

[image: image3.emf]
2) New features and changes detailed
Up
For Delphi 4 and 3, the automatic installer copies and registers the new packages

so you do not need to manually configure them.

See the “Install.txt” file in the appropiate folder for complete installation instructions.

Delphi 4 and C++ Builder 3

Packages are named using the "...44.bpl" convention, (TeeChart 4 for Delphi 4) and

the "...4C.bpl" convention (TeeChart 4 for C++ Builder 3).

A new package (TeeGL44.bpl) contains the TeeOpenGL unit and a small component used to switch the TeeChart rendering to OpenGL. This package is both a design-time and run-time package.

Also, a new TeeQR44.bpl package contains all QuickReport related units.

Package names under Delphi 4:

Design-time:
DclTee44.bpl and DclTeeP44.bpl

Run-time:
Tee44.bpl, TeeDB44.bpl, TeeUI44.bpl, TeePro44.bpl

Both:

TeeGL44.bpl, TeeQR44.bpl

The two "design-time" packages are necessary to be installed under Delphi or C++ Builder. The two "both" packages can optionally be installed if you want OpenGL support or QuickReport integration.

Delphi 3

Packages are named using the "...43.dpl" convention, (TeeChart 4 for Delphi 3) .

A new package (TeeGL43.dpl) contains the TeeOpenGL unit and a small component used to switch the TeeChart rendering to OpenGL. This package is both a design-time and run-time package.

Also, a new TeeQR43.dpl package contains all QuickReport related units.

Package names under Delphi 3:

Run-time:
Tee43.dpl, TeeDB43.dpl, TeeUI43.dpl, TeePro43.dpl

Design-time:
DclTee43.dpl and DclTeeP43.dpl

Both:
TeeGL43.dpl, TeeQR43.dpl

The two "design-time" packages are necessary to be installed under Delphi or C++ Builder. The two "both" packages can optionally be installed if you want OpenGL support or QuickReport integration.

Delphi 1, Delphi 2 and C++ Builder 1

Installation has not changed for these environments.

The TeeChart.pas (*.obj for C++1.0) should be installed into the component library

as usually. This will install TChart, TDBChart, all Pro series and the other new 4.0 components.

For QuickReport support under Delphi 1,Delphi 2 and C++ Builder 1.0, install the

QRTeeReg.pas unit as well. This unit installs the TQRChart component under

"QuickReport's" component palette tab.

Porting Forms from TeeChart 3 to TeeChart 4:

100% compatibility with existing saved DFM Forms containing TeeCharts is vital and

should work fine.

Simply open the DFM Form containing your charts and save it again. It will be

automatically converted to use the new properties of TeeChart 4.

Note: If you want to use *at the same time* both TeeChart 3 and TeeChart 4, then

do not save forms at design-time using the 4 version.

If you open the DFM Form again with the old version of TeeChart, you

will receive Delphi errors asking to ignore the unknown properties.

Source code changes:

Some properties are now obsolete or have been replaced, but they still exist for compatibility with TeeChart 3.0 version.

Some methods have been deleted or moved or replaced. These are not-frequently used methods, and an alternative way to do the same is described here.

New Units

Unit name
Description

TeCanvas.pas
Virtual TCanvas3D and TTeeCanvas3D components

GLCanvas.pas
OpenGL 3D rendering Canvas.

TeeBezie.pas
TBezierSeries component

TeeURL.pas
LoadChartFromURL procedure.

TeeEdit.pas
TChartEditor and TChartPreviewer components

TeeComan.pas
TTeeComander tool-bar component

TeePoEdi.pas
Generic "Pointer" editor dialog. Used by many Series editors.

TeeGriEd.pas
Surface and Contour common editor dialog

TeePoin3.pas
TPoint3DSeries component

Po3dEdit.pas
TPoint3DSeries editor dialog

TeeScroB.pas
TChartScrollBar component.

TeeVolEd.pas
TVolumeSeries editor dialog.

TeeLisB.pas
Includes now the TChartListBox component.

TeeOpenGL.pas
Small component to add OpenGL rendering to TeeCharts.

Removed Units

Unit name
Description

BubblEdi.pas
It was the Bubble Series editor. Now Bubble uses CustEdit.pas

The Chart editor dialog has been splitted in several units, each one containing a different sub-tab. These units are internal and not intended to be used independently:

IEdi3D, IEdiAxis, IEdiGene, IEdiLege, IEdiPage, IEdiPane, IEdiPeri, IEdiSeri, IEdiTitl, IEdiWall.

These units are internally used only by “IEditCha.pas” unit.

Note (except for Delphi 1):

With this partition, there's a huge speed and memory and resource comsumption benefit.

The editor dialog now pops up in few tenths of a second both at design-time and run-time, and uses initially around 20Kb. Memory is dinamically allocated while the user navigates across the editor tabs because each tab is loaded the first time it's requested.

Specific changes by feature:

New in all chart components (TChart, TDBChart, TQRChart, TDecisionGraph etc)

New BackWall (TChartWall class) property.

This subcomponent draws a back "wall" in the same way the LeftWall and BottomWall do:

Blue back wall with 3D :

[image: image4.emf]
The Frame (TPen) and BackColor (TColor) properties still exist for compatibility, but now they should be replaced with BackWall.Pen and BackWall.Color respectively:

Old:
Chart1.Frame.Width := 2

New:
Chart1.BackWall.Pen.Width := 2

Old:
Chart1.BackColor := clWhite

New:
Chart1.BackWall.Color := clWhite

By default, the BackWall.Brush.Style property is set "bsClear", to make the default Chart back rectangle transparent. Now the BackWall.Pen (the old Chart1.Frame) is set to Visible according to the Chart1.View3DWalls property. So, if View3DWalls is set to False, the back rectangle is no longer displayed.

All Chart Walls have now a new "Dark3D" property:

Chart1.LeftWall.Size := 8 ;

Chart1.LeftWall.Dark3D := False ;

This property determines if the right and top sides of walls would be painted with a darker color or with the normal wall background Color.

It is used only in 3D mode and when the wall Size property is greater than zero.

New View3DOptions property

This Chart sub-component includes the properties used to control the 3D aspect.

It has the following properties:

Property
Valid values

Orthogonal
Boolean

Rotation
Integer 270..360 degree (0..360 with OpenGL Canvas)

Elevation
Integer 270..360 degree (0..360 with OpenGL Canvas)

Tilt
Integer 0..360 degree (both normal and OpenGL Canvases)

HorizOffset
Integer +- (default 0)

Perspective
Integer 0..+100 % (default 15%)

VertOffset
Integer +- (default 0)

Zoom
Integer 1..+1000 % (default 100%)

ZoomText
Boolean

The normal Canvas, using Windows GDI calls, allow 3D Rotation and Elevation of 90 degree (from 270 to 360) only. This is because there is no calculation of what to draw first and what next, depending on those angles.

With the OpenGL Canvas, full rotation and elevation is provided.

When Orthogonal is True in 3D mode, rotation and elevation are disabled.

Zoom is for 3D mode or 3D Orthogonal. Not for 2D mode (to not loose speed).

The “ZoomText” property controls if, when Zoom is applied to a chart, it’s fonts will be zoomed or not. When ZoomText is True (the default), all font sizes are changed according to the zoom quantity. When False, the current selected font sizes aren’t changed.

(This applies to all fonts like Legend, Marks, Axis labels, Title, etc).

Other already existing related properties are: Chart1.View3D, View3DWalls, and Chart3DPercent. Functionality of them is maintained in this new version.

Example:

Chart1.View3DOptions.Zoom := 80 ; { % }

Chart1.View3DOptions.Rotation:= 330 ; { degree }

Chart1.View3DOptions.Elevation:= 330 ; { degree }

Chart1.View3DOptions.Orthogonal:=False;

Chart1.View3D:=True;

Chart1.View3DWalls:=True;

Chart1.Chart3DPercent:=75; { % depth}

3D Rotated empty chart :

[image: image5.png]Tehart

New Gradient styles.

The Gradient has now three new styles:

gdFromCenter

gdFromTopLeft

gdFromBottomLeft

New Chart events

Two new events in all Chart components:

OnBeforeDrawAxes

OnBeforeDrawSeries

Both events are triggered when the Chart is repainted.

OnBeforeDrawAxes is triggered after the Chart Title, Foot, Legend and Walls are drawn, but before the axes are displayed.

OnBeforeDrawSeries is triggered right after the axes are displayed, just before the Series are drawn.

(OnBeforeDrawSeries can be also understood as “On After Draw Axes”)

These new events can be used to improve custom drawing in 3D mode, drawing things between the axes and the Series (like filling bands on the chart walls).

New DepthAxis property.

This new Axis, which is not visible by default, is used to display either the Series Titles or a 3D Series Z values in the "depth" dimension, along the right-bottom side of the Chart.

Chart1.DepthAxis.Visible := True

The Surface Series now displays Z coordinates using this Axis. The DepthAxis has almost the same properties and methods as the other axes, like Increment, Minimum and Maximum, Label attributes, Ticks, Grids and so on.

It also works for DateTime "Z" coordinates.

Rotated Surface with 3 axis (Left, Bottom and Depth axis) :

[image: image6.png]

The "DepthAxis" can also be "Inverted", but can not be logarithmic.

New in all Chart Axis

Multi-Line Axis labels

Now Axis labels can be displayed as multi-line text instead of a single line of text.

Lines are separated using the "TeeLineSeparator" global constant, which by default

is the carriage-return ascii character (#13).

Example for series labels:

Series1.Add(1234, 'Hello'+TeeLineSeparator+'Baby' , clRed);

Series1.Add(2000, 'Good'+TeeLineSeparator+'Day' , clBlue);

Multi-line axis labels:

[image: image7.emf]
Example for DateTime labels:

The following will show the bottom axis labels in two lines of text, one

showing the month and day, and the second line showing the year:

Feb-28 Mar-1 ..

1998 1998 ..

Series1.AddXY(EncodeDate(1998,2,28), 100, '', clTeeColor);

Series1.AddXY(EncodeDate(1998,3,1), 200, '', clTeeColor);

Series1.AddXY(EncodeDate(1998,3,2), 150, '', clTeeColor);

Series1.XValues.DateTime := True;

Chart1.BottomAxis.DateTimeFormat := 'mm/dd hh:mm'; { <-- space }

If you set the Axis.LabelsMultiLine property to True, then the axis will

automatically split labels in lines where it finds an space.

Chart1.BottomAxis.MultiLine:=True;

Will use the formatting divided in two:

'mm/dd' for the first line

'hh:mm' for the second line

At run-time you can always split the label into lines programatically,

using the OnGetAxisLabel event:

procedure TForm1.Chart1GetAxisLabel(Sender: TChartAxis;

 Series: TChartSeries; ValueIndex: Integer; var LabelText: String);

begin

 TeeSplitInLines(LabelText,' ');

end;

Multi-line DateTime axis labels:

[image: image8.emf]
The global "TeeSplitInLines" procedure converts all spaces in "LabelText" to

line separators (returns).

The axis LabelsAngle property (label rotation in degree angles 0, 90, 180 or 270), can

also be used with multi-line axis labels.

Grid lines centered

All axis now have the "GridCentered" boolean property, which, when True, will draw

the grid lines between every label and the previous one, instead of drawing the grid line

at the same label position.

By default is False. Setting it to True is very useful to separate intervals:

Chart1.BottomAxis.GridCentered:=True;

Centered bottom axis black Grid lines:

[image: image9.png]

Both axes using the same Series

Now Series can define their HorizAxis and VertAxis properties to show both axes (left and right) and (top and bottom)

Series1.HorizAxis := aBothHorizAxis ;

Series1.VertAxis := aBothVertAxis ;

Showing all axes with the same Series:

[image: image10.png]0

150

100

el

20

150

100

£

Both axes will scroll or zoom as well.

Axis can be moved all around

Now all Axis have this new property to control where should the axis be located.

In this example, the axis is moved 50% of the total Chart width, so it is shown at the chart center:

Chart1.LeftAxis.PositionPercent := 50 ;

Centered vertical axis:

[image: image11.png]012345678 81011121314151817 1818|122

The new “PositionPercent” property applies to all axis, the default ones (Left, Top, Right, Bottom) and the custom user-created ones. “PositionPercent” can also be a negative number, or a positive number greater than 100. This allows moving the axes outside the Chart rectangle:

Chart1.LeftAxis.PositionPercent := -10 ;

Chart1.MarginLeft:=15;

[image: image12.png]210
20
20
180
180
140
120
100
&
&
W
2

1

23456785 81011213141518171818

Axes can be resized (stretched)

Similar to the “Position” property described above, now all axes have the following properties to stretch them:

Chart1.LeftAxis.StartPosition := 20 ;

Chart1.LeftAxis.EndPosition := 50 ;

All Series associated to the “stretched” axis strech their drawings as well.

Left axis stretched:

[image: image13.png]600
an0
20

012345678 810111213141518171818

These properties are also expressed in percent of the total default axis space.

They also apply to horizontal axes and to all custom-created axes (see below).

Unlimited multiple custom-created axes

This powerful new feature allows “extra” axes to be created and associated to any Series, and to any Series type (Line, Bar, Point, etc).

Together with the above “PositionPercent” and “stretching” new properties, now it’s possible to have unlimited axes floating anywhere on the chart.

Scroll , zoom , and axis hit-detection also apply to custom-created axes. Creating extra axes is only allowed at run-time, as some few lines of code are necessary:

Var MyAxis : TChartAxis ;

MyAxis := TChartAxis.Create(Chart1);

Series2.CustomVertAxis := MyAxis;

You can modify any property of the new created axes, such as the axis color or axis title:

MyAxis.Axis.Color:=clGreen ;

MyAxis.Title.Caption := ‘Extra axis’ ;

MyAxis.Title.Angle := 90;

Extra vertical axis associated to the green line Series:

[image: image14.png]600
550
500
450
an0
50
00

450

450

% a0

g4

@ 400

80

012345678 810111213141518171518

Custom Horizontal axes can also be created and associated to Series, allowing quite complex types of charts:

MyAxis2:= TChartAxis.Create(Chart1);

Series2.CustomHorizAxis := MyAxis2;

MyAxis2.Horizontal:=True;

MyAxis2.PositionPercent:=40;

[image: image15.png]750
0
650
600
550
500
450

Tehart

Gther exira axis

|
|
|
|
| T
|
|
|
|
|

a

0
00
630
680
640
20
600

Extraxis

Custom created axes are destroyed by the TChart (or TDBChart, TQRChart, etc) components, when the Chart is freed.

Note:

This new functionality (multiple axes) should be considered as “advanced” TeeChart programming.

It’s very easy to get “lost” in a deep sea of Series, axes and axes positions. <g>

Logarithmic Base

Axes have a new property which controls the logarithmic base (2, 10, etc) used to plot values and calculate label values:

Chart1.LeftAxis.Logarithmic := True;

Chart1.LeftAxis.LogarithmicBase := 2;

Only positive values are accepted.

Improved Logarithmic labelling

In TeeChart Pro 3.0, logarithmic axes did not display labels with the expected logarithmic style (10,100,1000 and so on...)

New in this version, axes plot labels that correspond to each exponent of the logarithmic base (by default the base is 10)

It’s necessary for this automatic labelling to have the axes Increment property set to zero (the default Increment). Otherwise, labels will be calculated as with non-logarithmic style.

With Chart1.LeftAxis do

begin

 Logarithmic := True;

 Increment := 0 ; { the default }

 SetMinMax(1, 1E10);

 AxisValuesFormat := '#e+0'; { exponential format }

end;

Logarithmic vertical labels:

[image: image16.png]Tert

1e10

05 1015 20 25 30 35 40 45 50 55 60 65 70 75

With few lines of code it’s possible to custom draw the dotted grid lines in between each logarithmic label:

Uses Math;

procedure TForm1.Chart1AfterDraw(Sender: TObject);

var t,Exponent,Y:Integer;

begin

 With Chart1,Canvas do

 begin

 Pen.Style:=psDot;

 Pen.Color:=clGray;

 for Exponent:=0 to 2 do

 for t:=1 to 8 do

 begin

 Y:=LeftAxis.CalcYPosValue(Power(10,Exponent)*t);

 HorizLine3D(ChartRect.Left,ChartRect.Right,Y,0);

 end;

 end;

end;

Logarithmic ticks

Minor axis ticks are now displayed at logarithmic increments.

For example, in the above logarithmic example, setting MinorTickCount to 8 will display each tick at it’s correspondent logarithmic position:

Chart1.LeftAxis.MinorTickCount := 8;

Chart1.LeftAxis.MinorTicks.Color:=clRed;

Chart1.LeftAxis.MinorTickLength:=6;

Red color Minor ticks in logarithmic positions:

[image: image17.png]1e13

1e12

1ot

1e10

Logarithmic axes can now be Inverted

In TeeChart Pro 3.0 version, axes could not be both Logarithmic and Inverted at the same time. Now this feature is possible in TeeChart Pro 4.0:

Chart1.LeftAxis.Logarithmic:=True;

Chart1.LeftAxis.Inverted:=True;

Chart1.BottomAxis.Logarithmic:=True;

Chart1.BottomAxis.Inverted:=True;

Logarithmic and Inverted vertical and horizontal axes:

[image: image18.png]0

100

Tohart

0

01

New TDraw3D component

Several methods have been moved to the lower ancestor class "TCustomTeePanel".

This is transparent for you, and provides then a big advantadge of having a new component for general use (not related to charting): TDraw3D

This new component has a sub-set of the Chart features, like printing, printing properties, copying to clipboard, margins, 3D Canvas, export to bitmap, metafile, jpeg, etc.

It is very much like a “TPaintBox on steroids”, where you can custom draw using the Canvas property. This Canvas has 3D capabilities like Zoom, Rotation, Elevation, Scrolling, etc, can be rendered using 3D OpenGL, and provides the same Printing, CopyToClipboard, "SaveTo..." exporting methods, DoubleBuffered display, Panel Margins, etc, than the Chart components.

An example of TDraw3D is included in the "Examples" folder.

TDraw3D example project:

[image: image19.png]Rotaior: [« 5
Eevaion <] B
Zoom [<] _| y
I~ Gpens.

=

7 Bulfered Display

New in TChartLegend

Legend Clicks

Now the Legend has a Clicked function to determine which Legend Item index is under the

mouse (or any other XY pixel coordinates):

Var tmp:Integer;

tmp:=Chart1.Legend.Clicked(x,y) ;

if tmp<>-1 then ShowMessage('Clicked legend item: '+Chart1.FormattedLegend(tmp));

Multiple Legend rows

When the Legend is aligned horizontally (top or bottom), now the number of rows can be specified:

Chart1.Legend.MaxNumRows:=3;

By default, MaxNumRows is 10 (ten), meaning the Legend will show at maximum 10 rows.

Setting it to 0 (zero) will make the Legend to show as many rows as necessary.

Multiple Legend rows:

[image: image20.png]

New Brush property

Now the Legend publishes a Brush property that can be used to fill the Legend background with a Brush.Style pattern, or with a Bitmap:

With Chart1.Legend.Brush do

begin

 Bitmap:=TBitmap.Create;

 Bitmap.LoadFromFile(‘mypattern.bmp’);

end;

New Series: TBezierSeries

This new Series type derives from a TPointSeries, adding a "LinePen" TPen property to draw a Bezier line every 3 points.

A bezier line is a curve which passes over every 3 points of a Series.

There are several ways to calculate the bezier curve points. This Series uses the same method

as Windows (GDI BezierTo function).

Bezier Series:

[image: image21.emf]
OpenGL 3D

Any Chart, DBChart, QRChart (also DecisionGraph), and the new TDraw3D components benefit of the new TTeeOpenGL component.

This non-visual component can be added to a Form at design-time, and by setting two properties it will instantly display a Chart or Draw3D using OpenGL 3D rendering engine:

For Charts:

TeeOpenGL1.TeePanel := Chart1;

TeeOpenGL1.Active := True;

For Draw3d:

TeeOpenGL1.TeePanel := Draw3D1;

TeeOpenGL1.Active := True;

The OpenGL Canvas provides a Light property (Visible, Color and Position XYZ), and other OpenGL related parameters.

Same with OpenGL rendering:

[image: image22.emf]
The source code for TeeOpenGL component is very, very small. It only does the job of replacing the Canvas property of the Chart or Draw3D. (See TeeOpenGL.pas unit)

It uses the TGLCanvas class, located at GLCanvas.pas unit, which is a (quite complex), implementation of a virtual TCanvas3D using OpenGL instructions.

OpenGL rendering works both at design-time and run-time.

Note: In this beta, several things related to OpenGL are not fully implemented.

New in Tee Functions

Changed the "Period" algorithm for "Moving" functions

In previous versions, the "Period" property for several functions was interpreted as "Period +1".

This applies to Momentum, RSI, MovingAverage and ExpAverage functions.

That means, for example, a MovingAverage of Period 3 was using 4 points for each calculation.

This design consideration was not perfect, so now in TeeChart Pro 4, the "Period" property is handled as it should be. A Period of value 3 will use 3 points for each calculation.

Begin and End Update methods

Procedure TTeeFunction.BeginUpdate;

Procedure TTeeFunction.EndUpdate;

These methods can be used when adding or modifying many values at once at a source Series, to recalculate the function just one time, when finished adding points:

TeeFunction1.BeginUpdate;

...

many modifications...

...

TeeFunction1.EndUpdate;

Function Period as Range

In 3.0 version, the function “Period” property was expressed always in number of points.

Now in this new version Period can be defined to be a range. This is very useful when using Date-Time series and want to express the “Period” of the function in a date-time step like “OneMonth” or “OneDay”.

There is a new property “PeriodStyle” which controls how is “Period” expressed.

(Note: this property was also in a previous 1.03 version of TeeChart Pro).

So, for example you can now plot the, for example, “monthly average of sales” function just using a normal “Average” function on a date-time source series and setting the function period to “one month”:

{ Place a Series1 and fill it with datetime data values at runtime (or from a database) }

Series2.SetFunction(TAverageTeeFunction.Create) ;

Series2.FunctionType.PeriodStyle:=psRange;

Series2.FunctionType.Period:=DateTimeStep[dtOneMonth];

Series2.DataSource:=Series1 ;

This will result in several points, each one showing the “average” of each month of data in Series1.

It’s mandatory that points in the source Series1 should be sorted by date when calculating functions on datetime periods.

The range can also be used for non-datetime series:

Series2.SetFunction(TAverageTeeFunction.Create) ;

Series2.FunctionType.PeriodStyle:=psRange;

Series2.FunctionType.Period:=100;

Series2.DataSource:=Series1 ;

This will calculate an average for each group of points inside every “100” interval.

(Points with X >=0, X<100 will be used to calculate the first average, points with X >=100, X<200 will be used to calculate the second average and so on...)

Notice this is different than calculating an average for every 100 points.

Function Period Alignment

When the function “Period” is greater than zero (so it calculates by groups of points),

the function results are added to the series by default at the “center” position of the Function Period.

Now there is a new property which controls “where” to place function calculations inside the full period space.

TeeFunction1.PeriodAlign := paCenter ; { <-- by default is centered }

The “paFirst” and “paLast” constants will plot calculations at the start and end “X” coordinates of each “Period”.

Every blue point shows the “average” using all points between the first day and the last day of the month.
PeriodStyle = OneMonth, and PeriodAlign = paLast
The “average” is plotted at the end of the month.

[image: image23.png]15
1
154
152 3o
15050 un L 30-Nov
148 1557 @ 1957
15T
144
o Ol OiSen | 00d | Oifev | orbec

1997 1997 1997 1997 1997 1997

PeriodStyle = OneMonth, and PeriodAlign = paFirst
The “average” is plotted at the beginning of the month.

[image: image24.png]158
158

01-Aug

154

15;

150
148
148
144

1357
GET] Oisen
O-e
1557
£'3 ‘ij’ GEC) 1357
L Tty
L2 1357
o1l A DS | 0lod OiMv O1Dec
1997 1997 1297 1997 1997 1297

TTrendFunction

In 3.0 version, the Trend was calculated using the CurveFitting algorithm found in poly.pas unit.

This took a lot of CPU time. Now it calculates the Trend points using the standard formula, which results in a much faster calculation speed.

New in DBChart

OnGetText TField support

Now DBChart uses (if assigned) the default standard Delphi's TField "OnGetText" event, for Series Labels:

procedure TForm1.Table1NAMEGetText(Sender: TField; var Text: String;

 DisplayText: Boolean);

begin

 Text:=Text+'%';

end;

Refer to Delphi's Help of TField.OnGetText for more details.

Null field values

Now DBChart detects NULL field values properly, and adds null points to the Series using the Series.AddNull method and / or AddNullXY methods.

Single-Record Charting

You can now connect a Series1 to a Delphi's TDataSource component (before it was only for TTable, TQuery or TDataSet).

This allows to plot single-record multiple-field values into a single Series without any programming.

The "trick" is to set the Field names you want to plot toghether separated with ";"

Series1.DataSource := DataSource1;

Series1.YValues.ValueSource := 'Field1;Field2;Field3'

The current DataSource record will be used to plot the specified field values.

The DBChart does not move the current record position, and, when the DataSource changes the current record (by for example using a TDBNavigator), it refreshes the chart again with the new record values.

Updates to the underlying dataset force a refresh, so the DBChart retrieves the current record again.

The "DataSource" tab at the Chart Editor dialog has been expanded to support "single-record" TDataSource component and fields selection:

The picture below shows a Bar Series (Series1) connected to a Delphi's TDataSource

component (DataSource1), with selected fields "SIZE" and "WEIGHT" in DataSource1.

[image: image25.png]ChartE ditF orm
Chat | Seies |

Foma| o] ks DatoSouce |

Single Record <

il Bar Serest

DataSource: [Datasourcet

Avaible Fields

‘Selected Felds:

Sz
WEIGHT

Like in the TDataSet normal datasource dialogs, TDataSource components can be located at TDataModules or any "used" Form.

Editor Dialogs

(See also new TChartEditor and TChartPreviewer components below)

The EditPro.pas unit now includes two new global procedures:

The first one can be used to show the user the dialog associated to the Series, without the whole Chart editor:

Procedure EditOneSeries(AOwner:TControl; ASeries:TChartSeries);

Example:

Uses EditPro;

EditOneSeries(Self,Series1);

The other one shows the user a "Save to..." dialog asking for a native TeeChart file name and path (ie: c:\chart1.tee). You can use the returning string to save it using the TeeStore.pas unit SaveChartToFile global procedure .

Function SaveChartDialog(AChart:TCustomChart):String;

Example:

Uses EditPro,TeeStore;

Var tmpName : String;

tmpName:=SaveChartDialog(Chart1);

if tmpName <>’’ then SaveChartToFile(Chart1, tmpName);

All Series classes

New custom Array linking

A very high demanded feature is now supported.

Use your existing Arrays of values to link a Series directly to them.

This gives more speed and uses less memory, but has some obvious restrictions.

A separated technical document explains everything about it and discuses several "speed tips" when using TeeChart Pro. (See TeeArray.doc document).

New method AddNullXY

This new method allows inserting null values when using XY coordinates:

Series1.AddXY(1.234, 5.678, ‘’, clRed);

Series1.AddNullXY(2.2, 3.3, ‘’);

Series1.AddXY(3.3, 8.8, ‘’, clRed);

Custom Mark positions

Now all Series classes maintain an internal list of Series Marks positions. This means you can, at run-time, modify the position of every point's Mark rectangle.

Note that, when Marks positions are customized, zooming or scrolling the Chart will not reposition that Marks.

Mark positions can be reverted back to automatic when desired.

(See included example of Mark dragging)

Rotated Pie, Mark dragging and slice exploding:

[image: image26.emf]
Multi-Line Marks text

As with axes labels, now Marks can show text in multiple-lines.

Series1.Add(1234, ‘Hello’+TeeLineSeparator+’World!’, clRed);

(The new “TeeLineSeparator” constant is just a carriage-return character: #13)

Mark showing “Hello World!” in two lines of text:

[image: image27.png]Tehart

1,200
1100
1,000
00
a0
00
600
500
a0
300
200
100

Helo 735 Gos e e
World!

Detecting Mark clicks

The Marks sub-component has now a new "Clicked" function method, which returns if a Series Mark is under the mouse cursor (or any XY pair of pixel coordinates):

Var tmp:Integer ;

tmp:=Series1.Marks.Clicked(x,y);

if tmp<>-1 then ShowMessage('Clicked Mark of point: '+Series1.XLabel[tmp]);

ZOrder, Z Position

Now every Series accepts setting the ZOrder property. This property controls where in the Z direction (depth from front to back), will be the series located. By default, ZOrder is zero, meaning the Chart will sort all Series in the same order they are in the chart.

Setting the ZOrder can be used to overlap series, to plot them at the same Z positions.

Red series has ZOrder = 12, Green series has ZOrder = 0

[image: image28.png]600
550
500
450
an0
350

ZOrder can be used in many situations, like for example a Line on top of an Area series, both sharing the same “Z” space, and a Bar series in another Z position.

Line and Area on the same Z. Yellow Bars on another Z.

[image: image29.png]

Line1.ZOrder:=1;

Area1.ZOrder:=1;

Bar1.ZOrder:=0;

Gantt Series

Custom Gantt bar formatting (and shape style for each point)

Now Gantt bars can be customized (Color, Pen, Style, Brush pattern, etc), by using the Gantt Series OnGetPointerStyle event:

function TForm1.Series1GetPointerStyle(Sender: TChartSeries;

 ValueIndex: Integer): TSeriesPointerStyle;

begin

 if ValueIndex mod 2=0 then result:=psRectangle

 else result:=psTriangle;

end;

As the TCustomSeries Pointer Style can now draw shapes in 3D, this also applies to Gantt Series. Gantt bars (or any shape) can be displayed like solids (cube, pyramid, etc).

Different styles for Gantt points:

[image: image30.emf]
Line, Area, Point, Bubble, Gantt, etc Series

3D Shadow

All Series derived from Point Series, (like Line, Area, Bubble, Gantt, Candle, etc),

have now a new boolean property "Dark3D" (default True).It controls if the point segments will be colored using a darker color than the Series color, thus giving a better 3D view effect.

3D Shadow filling:

[image: image31.emf]
Shadowing can be enabled or disabled using the new Dark3D property:

Series1.Dark3D := False ;

Line Series

New LineHeight property for 3D strip lines

This integer property controls the height of the line when Chart1.View3D is True:

Chart1.View3D := True ;

Series1.LineHeight := 4;

LineHeight = 4 in red line series

[image: image32.emf]
Improved Line Series Clicked method

Mouse clicks are now detected correctly when “Stairs” property is True.

Bar and Horiz Bar Series

Picture filling for Bar's background

Now the Bitmap property of the BarBrush can be used to fill the Bar interiors with a bitmap pattern.

Series1.BarBrush.Bitmap := TBitmap.Create;

Series1.BarBrush.Bitmap.LoadFromFile('c:\sky.bmp');

Refer to Delphi's help "TBrush.Bitmap" property for more info.

A bitmap inside Bars:

[image: image33.emf]
Automatic-Bar width / height

With TeeChart Pro 3.0 version, Bar width's were calculated in pixels.

Now in TeeChart Pro 4.0, Bar width's are calculated in axis scales, only when

the new property "AutoBarSize" is set to True (by default is False).

Series1.AutoBarSize := True ;

This allows resizing the Bars when the chart is zoomed, thus giving Bars the

appearance of being close or far away from the user, when the chart is zoomed in

or zoomed out.

Setting AutoBarSize to False will calculate the Bar widths in pixels the first time

the Series1 is displayed, and this width will be permanent even if you zoom or scroll (as TeeChart 3.0 did before).

Some BarSeries methods have been removed, because now they can replaced with calls to the underlying new Canvas:

These BarSeries methods were too internal to be called from developers.

They have been replaced with new methods at Chart1.Canvas object:

Old

Replaced with

BarPolygon

Canvas.Polygon

BarEllipse

Canvas.Ellipse

DrawBarEllipse

Canvas.Ellipse

Fast Line Series

Marks

Now the Fast Line Series also draw Marks, like LineSeries or any other Series does:

Series1.Marks.Visible := True

FastLine Series with Marks:

[image: image34.png]

Dramatic speed for real-time charting with FastLine Series

The Fast Line Series now includes internally what was before included in the "TeeKit" examples in TeeChart 3.0

A new boolean property "AutoRepaint" controls if new points added to the FastLine will force a redisplay of the whole chart, or will just draw the new added points directly to the Canvas, with as much speed as possible.

(See also the example included in this beta in “Fast-Line speed” folder and the "Teekit\ Extras\FastLine" example in TeeChart Pro 3.0)

When AutoRepaint is False, the Fast Line will draw new added points instead of redrawing the whole Chart and all points. (Axis scales aren't changed when using this option)

This speeds up drawing a lot. Adding and drawing 15000 points takes one

second on a Pentium 166 using Windows 95. (20000 points per second on a P200 with NT4)

For ultra-high speed, you can consider using arrays and passing the array pointers to a Fast-Line series. The TeeArray.doc document explains everything about speed and using arrays.

Adding and displaying 200000 (two hundred thousand) points takes one second on a P200.

Candle Series

Candle Series has two new properties:

Series1.Draw3D := True;

Series1.Dark3D := True;

Note: 3D candles have effect only when Chart View3D is True, and only when the Candle Style property is "CandleBar".

This displays candle bars in 3D mode:

[image: image35.png]£
330
25
20
315
a10
E
300
285
200
285
280
75

35,860

Tohart

3585

Bubble Series

3D Shadow

Now the Bubble Series makes a better use of the Pointer.Draw3D property.

Triangles and Inverted Triangles are now drawn as 3D Pyramids when Pointer.Draw3D is True:

Series1.Pointer.Draw3D := True ;

3D Styles

As with all other Series derived from TPointSeries, Bubbles can now be displayed

as 3D pyramids or cylinders.

Bubble Series as pyramids:

[image: image36.png]

Pie Series

Exploded Pie Slices

Now the Pie Series has a new TList of values to determine the "Exploding" in percent (0..100%) for each individual Pie Slice.

This works both in 2D and 3D, and also allows Pie rotation.

The Pie automatically resizes to accomodate the space needed by the exploded slices:

Series1.ExplodedSlice[0]:=20; { <-- 20% exploding for the first pie slice }

ExplodeBiggest

This new property is a percent integer that is used to automatically explode the largest slice in the Pie:

Series1.ExplodeBiggest := 30; { 30% exploding of the largest slice }

Exploded Pie slices:

[image: image37.emf]
"Other" slice grouping

Now Pie slices below a user define percent or value can be grouped into a single slice.

The options are:

Series1.OtherSlice.Style := (can be poNone, poBelowPercent or poBelowValue)

Series1.OtherSlice.Value := (any value or percent)

Series1.OtherSlice.Text := 'Other' ; (Label text for the "Other" slice, by default is "Other")

As existing slices are not removed, this allows to change on-the-fly both at design and run-time the OtherSlice properties, without having to re-fill again the Series with values.

Groupped slices also allow rotation and exploding.

With "Other"

Without "Other"

[image: image38.emf][image: image39.emf]
You can also move each slice Mark to a custom position. See “Custom Mark positions” in this

document.

Pie.Brush.Bitmap

Now the Bitmap property of the Pie.Brush can be used to fill the Pie slices with a bitmap pattern. (See Bar series code above).
Automatic Pie values Sorting

Now Pie slices can be optionally sorted in Ascending or Descending order, using this property:

Series1.PieValues.Order := loAscending;

Possible values are loNone, loAscending or loDescending.

When Order is loNone (the default), slices are displayed in the same order they are added to the Pie Series.

Note: The slice colors are not preserved when switching the Pie Order. You should specify fixed Colors for each Pie slice to preserve them. (ie: Series1.Add(123, 'Hello', clRed)

Some Pie properties and methods have no effect now, and have been removed:

These PieSeries properties have no sense with the current 3d changes.

They have been removed:

Old

New

Offset3D

Chart1.View3DOptions.Elevation

Color3D

(now it is always True)

ShadowColor

(has no effect now, should use Dark3D property)

Shadowed3D

("" "" "" "")

CirclePen: TPen
(has no effect, should use now PiePen TPen property)

Polar Series

As with the Pie Series removed properties, now the Polar Series does not include the "PiePen" property.

This was wrongly inherited from TCircledSeries in TeeChart Pro 3.

New projects should use the "CirclePen" property instead of "PiePen."

The Polar Series also supports rotation and elevation when in 3D mode.

Polar Series with rotation and elevation:

[image: image40.emf]
The TPolarSeries "DrawRing" method has now an additional parameter:

Procedure TPolarSeries.DrawRing(Const Value:Double; Z:Integer);

"Z" is the Z position where the ring will be displayed.

You can use TPolarSeries "StartZ" or "EndZ" properties to draw rings at front and at back Z positions respectively:

Series1.DrawRing(1234, Series1.EndZ);

New Brush property

Polar Series (and also the new TRadarSeries) have now a “Brush” property which is used to fill the inside of the polar points:

Polar series filled with a hatched blue Brush:

[image: image41.png]S0
o 600 /400200 00 i

00, 500, A0

CircleLabels property to draw angles around Polar circle.

The Polar Series has two new properties to control displaying of polar point Angles around the circle perimeter:

Series1.CircleLabels := True; { <-- show labels ! }

{ set font attributes... }

With Series1.CircleLabelsFont do

begin

 Color:=clBlue;

 Size:=10;

 Style:=[fsItalic, fsBold];

end;

The above code with a Polar Series displays this chart:

[image: image42.png]1707009080 4

120

150
160

170

00 00
180

190 350
200
210

230 310
a0~] 300

250 350555 750290

Two new global constants control if "CircleLabels" will be rotated or not, and which character will be used to add to the resulting "degree" label string.

Note: These constants are not fully "official" yet.

Const TeePolarRotatedLabels:Boolean=False;

 TeePolarDegreeSymbol:Char= 'º';

Rotated Angle labels with degree symbols:

[image: image43.png]

This new "CircleLabels" feature also applies to the new Radar Series style.

Shape Series

Now it has new Styles:

3D

Cube, Pyramid, InvertPyramid

2D

Cross, DiagCross, Star

Shape size in pixels

Now the position (Left, Top) of a Shape can be specified as axis values, while the size of the Shape (Width and Height) can be specified in screen pixels:

Series1.XYStyle := xysAxisOrigin;

Series1.X0 := EncodeDate(1998, 1,1); <-- in BottomAxis scales

Series1.Y0 := 1234.56; <--- in LeftAxis scales

Series1.X1:=100 ; <-- 100 pixels Width

Series1.Y1:=30 ; <--- 30 pixels Height

Shape.Brush.Bitmap

Now the Bitmap property of the Shape.Brush can be used to fill the shapes with a bitmap pattern. (See also Bar and Pie Series Brush Bitmap above)
Shapes Z position

When the Shape position is expressed in pixels (that is, when the Shape property "XYStyle" is "pixels"), the Z position is automatically set to zero (in front).

Surface Series

3D Rotation, elevation and zoom

The Surface has been rewrited so now supports Rotation, Elevation and zoom (also full with OpenGL rotation and elevation) as like any other Series.

When elevation is maximum, we're seeing the surface from the top, thus seeing a "contour" map.
We can "fly" in between a surface from any angle (with OpenGL).

3D Perspective

Perspective is also supported by Surfaces, although depending on which combination of zoom, rotation and elevation, it might be necessary to make the Perspective smaller so all surface cells are drawn correctly.

Legend showing Surface Palette

Now the Chart Legend uses the Surface Palette of colors to show the Legend items.

Every legend item corresponds to a Palette item. It shows the Color and the UpToValue property.

You can still use the Chart OnGetLegendText event to customize the legend item text.

Series1.PaletteSteps:=10;

Surface Legend:

[image: image44.png]

This new Legend style also applies to the new TContourSeries. Setting the PaletteSteps property to the same value as Contour “NumLevels”, will use a different color for each Contour “level” at the Legend:

Series2.PaletteSteps:= Series2.NumLevels ;

Contour showing Legend

[image: image45.png]o1 13 73 14 15 16 17 81

"Z" axis labelling and ticks

Using the new Chart1.DepthAxis sub-component, the Surface Z values are displayed along

the right-bottom side of the Chart box, in the "Z" (front to back) direction.

(See blue axis labels at Surface picture above).

No need to enter data sorted

Now it's possible to call AddXYZ to add Surface points in any order:

Series1.AddXYZ(12, 100, 5 , '', clTeeColor);
Series1.AddXYZ(8, 100, 2 , '', clTeeColor);

No need to enter all points.

Surfaces will draw "holes" where no point values have been added. That means you don’t need to call AddXYZ for all possible X and Z ranges.

This is compatible with setting the point color to "clNone" to draw holes too:

Series1.AddXYZ(8, 0, 2 , '', clNone);

Multiple Surfaces per Chart

You can mix as many surfaces on the same chart, with same grid size or not.

As each Surface is as an individual component, all formatting / coloring properties
are individual for each Surface. Something like "stacked surfaces" is also allowed.

"Shape Series" or any other Series can be mixed with Surfaces. You can also add "shapes" (cubes, pyramids, rectangles, etc) at specific XYZ positions (for example you can represent "cities" over a "landscape" surface, each "city" with different size, color, text, etc).

Multiple Surfaces of different dimensions:

[image: image46.emf]

Surface can now be "Z Inverted" (switch to view from back)

Using the new Chart "DepthAxis" property, now it's possible to draw Surface series "from the back" by setting the DepthAxis "Inverted" property to True:

Chart1.DepthAxis.Inverted := True;

This also works now for horizontal axis:

Chart1.BottomAxis.Inverted := True;

Increased maximum Surface size

Now it's possible to configure a Surface Series to have up to a maximum of 500x500 cells.

(In Delphi 1.0, a maximum of 127x127 cells because TList maximum of 16380 items).

Memory is dinamically allocated and deallocated.

TPoint3DSeries

This new Series is very similar to a TPointSeries, adding Z values for each point:

Series1.AddXYZ(123, 456, 789 , 'Hello', clRed);

Unlike Surface or Contour Series, the Point3D Series does not impose any limit on the X,Y,Z coordinates or number of points. Think as it is the same as a normal Point Series, with each point located inside the chart axes in a different XYZ position.

TPoint3DSeries:

[image: image47.png]

The LinePen property is used to select the pen to draw lines connecting the 3D points,

in the same order they were added to the Series:

Series1.LinePen.Color := clRed;

TStdDeviationFunction

This new function calculates the Standard Deviation (also "Complete" StdDeviation) of the source Series point values.

LoadChartFromURL

This global method allows to retrieve a binary "mychart.tee" file from any Internet URL address.

This works with Windows 32bit and Microsoft's WININET.DLL (included for example in InternetExplorer 4.0).

Uses TeeURL ;

LoadChartFromURL(Chart1, 'http://www.teemach.com/demo.tee');

The TeeURL.pas unit does the job. It dinamically loads the WININET.DLL when loading a file for first time.

You can also use it to retrieve any other file from Internet. May be broken in the future when Microsoft will release a new version of WinInet.dll (<g>)

TRadarSeries

This new Series type is very similar to a Polar series (actually, both Polar and Radar derive from a common TCustomPolarSeries class).

Every point in the Radar series is drawn at a different angle (360 degrees divided by total number of points).

Like Polar Series, more than one Radar series can be plotted together in the same chart (better if all Radar series have the same number of points).

Two Radar series:

[image: image48.png]

All properties of Polar Series also apply to Radar.

As with Polar series, Grid lines and labels are controlled by LeftAxis and BottomAxis axes.

The first Series controls the “CirclePen” property (shown in blue color above).

Both Polar and Radar can now fill the area bounded by points using the Brush property.

The TRadarSeries component is implemented at TeePolar.pas unit.

White filled Radar Series with "CircleLabels" property:

[image: image49.png]Marc David

Charles arga

The inside area of the total Radar shape can also be filled using the "CircleBackColor" property.

TWindRoseSeries

This new Series (located at "Samples" chart gallery tab), is a small component which derives from Polar Series. It overrides the default labels around the polar circle perimeter to show "Wind" directions (North, South, West, East, etc).

It is provided as an example of Series customization.

The "AngleIncrement" property controls how many labels around the circle will be displayed.

TWindRose is configured to plot labels every 30 degree.

Series1.AngleIncrement := 30;

"Wind" data can be added using the AddPolar method:

MyAngle := 180 ; { wind coming from the south }

MyValue := 123 , { wind speed value }

Series1.AddPolar(MyAngle, MyValue, '', clRed);

[image: image50.png]Wind Rose
N

TClockSeries

This Series derives from Polar series and displays a "live" clock.

The "Style" property controls if the clock "numbers" will be "decimal 1,2,3...etc" or

"roman I,II,III,IV... etc".

Several properties allow formatting the clock:

Series1.Brush.Color := clYellow;

Series1.CircleBackColor := clWhite;

Series1.PenHours.Color := clBlue;

Series1.PenMinutes.Color := clRed;

Series1.Style := cssRoman;

[image: image51.png]Clack Series

TContourSeries

This new Series type is very similar to the 3D Surface Series.

TContourSeries:

[image: image52.png]

Contour points can be assigned to a Surface and vice-versa:

Series1.AssignValues(Series2);

The number of contour levels can be specified from 1 to 250.

The Surface's "UseColorRange" and "UsePalette" properties also apply to contour series.

Each contour Level can be coloured using a range (ie: from blue to white) or a "Palette", which can be customized for specific value intervals (ie: red from 100 to 200, green from 201 to 400). Same as with TSurfaceSeries.

Each Level can be colored using a different color by doing:

ContourSeries1.ColorEachPoint := True;

Levels can be displayed at custom "Y" vertical positions:

ContourSeries1.YPosition := 123;

Each Level can display at it's own Level "Y" position by setting this property:

ContourSeries1.YPositionLevel := True;

The ContourSeries, by default, shows at the Legend one item for each corresponding Contour “Level”. The Contour Series has an event “OnGetLevel” which can be used to override each automatic Level “Value” and “Color”:

procedure TForm1.Series1GetLevel(Sender: TContourSeries;

 LevelIndex: Integer; var Value: Double; var Color: TColor);

begin

 Value:=LevelIndex*100.0;

 if Value<500 then Color:=clBlue

 else Color:=clRed;

end;

The “LevelIndex” parameter specifies each contour level, from 0 to NumLevels-1.

Error Series

This new Series is similar to the already existing TErrorBar Series.

It has an additional “ErrorValues” property which is used to display an “error” shape at every point XY position:

Series1.AddErrorBar(1,1234,50,'',clBlue);

This series has a property to control how the “error” shape is displayed:

Series1.ErrorStyle:=essTopBottom;

“ErrorStyle” values can be: Left, Right, Top, Bottom, Left-Right or Top-Bottom.

Error Series in “top-bottom” style:

[image: image53.png]1100
1,000
a0
a0
00
600
500
an0
00
20
100

Both "ErrorBar" and "ErrorSeries" styles allow specifying the “error” dimension in fixed screen pixels or in axis scales values, using the ErrorWidth and ErrorWidthUnits properties.

Error points can be colored using the “ColorEachPoint” or “ValueColor” properties as usually.

TTeeComander

TTeeComander is a visual Panel component containing several buttons to allow users at run-time to rotate, offset and zoom any Chart (DBChart , DecisionGraph, etc) or a TDraw3D panel.

TeeComander1.Panel:=Chart1 ;

TeeComander panel:

[image: image54.png]2z, @ 1| B |18 oreo et matonto zoom, Rt buttonto seran

Every button does the following (in left to right order) :

Description

Zoom with left button, Scroll with right button (like TeeChart 3.0).

Drag the Chart to Rotate in 3D mode.

Drag the Chart to Move in 3D or Orthogonal mode.

Drag the Chart to Zoom in 3D or Orthogonal mode.

Drag the Chart to Resize the Z dimension in 3D or Orthogonal mode.

Show the Chart Editor dialog.

Show the Chart Print Preview dialog.

Copy the Chart to Clipboard as Bitmap picture format.

Note:

When using a "DBChart" component with a TeeComander toolbar, remember to include the DBEditCh unit at your "Uses" clause:

Uses,DBEditCh ;

This unit (DBEditCh) is responsible of the Chart editor DataSource tab when linking it to a database chart. DBEditCh requires the Delphi database packages and / or BDE units, while the TeeComander alone does not require them.

Also, if you use any Series style from the "Extended" gallery section, add the "EditPro" unit as well:

Uses,EditPro ;

This unit (EditPro) will include the necessary sub-units containing the "Extended" Series editor dialogs.

Print Preview Dialog

Proportional size

Now the Print Preview dialog automatically changes the chart “PrintMargins” to show and print the chart matching the proportions of the screen chart.

(This solves several printing problems when using Delphi 1 or Windows 95 A.)

It also improves what will be on paper will look as it is on screen (same proportions).

This feature can be enabled / disabled with the new TChart.PrintProportional property:

Chart1.PrintProportional := False;

Chart1.PrintMargins.Top := 35;

There is a new Chart function that calculates the PrintMargins based on actual screen dimensions, paper orientation and paper size:

Function TChart.CalcProportionalMargins:TRect;

This function is used internally by the printing methods and the print preview dialog.

Dragging and resizing in the Preview dialog

Dragging and resizing the Chart using the mouse now does not repaint the chart so resizing and dragging is faster. The Chart is painted with the new size and position once the mouse dragging is finished.

Both the “Proportional” and “DragChart” new features can be enabled / disabled using the new TChartPreviewer component.

TChartEditor and TChartPreviewer

These new non-visual components make easier to configure and use at run-time the Chart editor dialog and the Print Preview dialog. (Similar to Delphi's TxxxDialog components).

Using these components you have access to new options and features of the Editor and Print Preview dialogs.

The Preview dialog can now show the paper with your selected color:

ChartPreviewer1.PaperColor := clAqua;

Other options let you allow moving and resizing the Chart at the Preview window, repaint the Chart while moving or resizing, disabling printer setup, disabling margins, making margins proportional to screen proportions, or printing the chart background.

See TChartPreviewer component reference at help file.

These components can be tested double-clicking them at design-time.

They have properties to configure which editor Tabs are visible or not, window style (normal, maximized) , which buttons are visible to allow the end-user to add or delete Series, etc, etc.

Editor example:

ChartEditor1.Chart := Chart1;

{ ... ChartEditor1.Options:=[...] }

ChartEditor1.Execute;

Print preview example:

With ChartPreviewer1 do

begin

 Chart := Chart1;

 PaperColor :=clYellow;

 Options:=Options+[cpoDragChart]-[cpoResizeChart];

 Execute;

end;

Note 1: "Pro" Series dialogs show at the editor when "Uses EditPro" is included in your project:

Uses EditPro;

Note 2: "EditDBCh" Unit should be added to the “Uses” clause if using a DBChart and a TChartEditor.

Uses DBEditCh;

Multiple-editors per Series

TeeChart Pro 4.0 now reuses editor dialogs for Series with common groups of properties.

For example, Line and Area Series now add a new "Point" sub-tab to edit the "Pointer" properties:

[image: image55.png]ChartE:

Chart Series |

Series? =] Bz Line:Series?
Formi

i wion
a0 peiont [+ 2]
¥ Inflate Margins

¥ Dark3D Style: [Souare

Background.. | ' Defeult Border.

TChartListBox component

This new component is a normal TListBox with automatic filling with Series titles.

The listbox has a "Chart" property which should point to the desired TChart or TDBChart or TQRChart component:

ChartListBox1.Chart := Chart1 ;

The listbox looks like this:

[image: image56.png]tz @ [l Series2
il 7 [] series3

TChartListBox component offers the "Color" and "Font" properties to improve appearance:

ChartListBox1.Color:=clYellow ;

ChartListBox1.Font.Style:=[fsBold];

ChartListBox1.Font.Size:=12;

ChartListBox1.Font.Color:=clNavy;

[image: image57.png]Series2
Series3

The listbox has this end-user interaction:

· Allow change the Series style

By double-clicking on the left-most Series icon

· Allow show / hide the Series

By checking / unchecking the checkbox

· Allow change the Series color

By double-clicking on the Series "legend" colored

rectangle.

· Allow editing the Series

By double-clicking on the Series Title text string, and this code:

procedure TForm1.ChartListBox1EditSeries(Sender: TChartListBox; Index: Integer);

begin

 EditSeries(Self,Chart1[Index]);

end;

· Allow drag and drop to sort Series

By dragging a Series Title text with the left mouse button pressed, then dropping the Series on top or on below another Series title.

QuickReport QRChart component

New OnPrint event

The QRChart component has now a new event:

procedure TForm1.QRChart1Print(Sender: TQRChart;

Var PaperRect, ChartRect: TRect);

The “PaperRect” parameter has the coordinates of the Chart in QuickReport units.

The “ChartRect” parameter has the coordinates of the Chart in TeeChart units.

Both parameters can be changed using this new event.

For example, if the “ChartRect” parameter is doubled in size, the Chart will be twice bigger, but printed in the same position and space:

procedure TForm1.QRChart1Print(Sender: TQRChart;

var PaperRect, ChartRect: TRect);

begin

 With ChartRect do

 Begin

 Right := 2*Right – Left;

 Bottom := 2*Bottom - Top;

 End;

End;

QRChart Frame

The “Frame” TPen now displays fine both at previewing and printing:

QRChart1.Frame.DrawLeft := True ;

QRChart1.Frame.DrawRight := True ;

New package for QRChart component

All QuickReport - related units have been moved to a new separate package. The units are: QRTee.pas and QRTeeReg.pas. The new package is both a design-time and run-time package, so that means you can install it under Delphi or C++ Builder, and the default location for this new package is the \Windows\System (or System32 in NT) folder.

There are two big advantadges with this new package:

1) The Database TeeChart package (TeeDB) now does not need the QuickReport packages. This is a benefit for deployment: if you do not use QuickReport in your applications you don't need now to deploy the QuickReport packages because you are using a DBChart component.

2) If you have an old version of QuickReport, it's not necessary to upgrade to a new QuickReport version when you are installing TeeChart 4.0. Simply do not install the new TeeQR package.

The only disadvantadge is you need to remember to include the new small TeeQR package with your deployment files. Also a new package is at Delphi or C++ Builder installed packages list.

New Global methods:

New procedure ConvertTeeFileToText

This new procedure is located at "TeeStore.pas" unit.

The purpose of this method is to create a file containing a text ascii representation of a previously saved "*.tee" file.

Uses TeeStore;

SaveChartToFile(Chart1,'c:\mychart.tee');

ConvertTeeFileToText('c:\mychart.tee','c:\mychart.txt');

The "MyChart.tee" file will contain both Chart and Series properties and Series point values, while the text file "MyChart.txt" will contain only Chart and Series properties.

It can be used for debugging help, or to copy / paste saved charts into Delphi or C++Builder IDE at design-time.

New Global constants:

TeeDrawAxesBeforeSeries global constant

This new global boolean constant determines if chart axes are displayed “before” or “after” drawing the Series.

By default is True. Setting it to “False” is useful in case you change the axis “PositionPercent” so the axis is moved inside the Chart rectangle. When “False”, first all Series are drawn, then the axis, so the axis are on top of the Series points.

TeeDrawAxesBeforeSeries := False ;

3) Advanced: changes to protected sections
Up
Global procedures

The GradientFill procedure has been moved from TeeProcs.pas global,

to TeCanvas.pas unit, under the Chart.Canvas property:

Chart1.Canvas.GradientFill(...);

Global variables

PrintTeePanel Boolean global constant has been moved to the TeeProcs.pas unit.

Axes

The Axes PosAxis3D public property is now obsolete. It is now the same as the PosAxis property.

The following functions have been deleted:

Function CalcXSizeValue(Const Value:Double):Longint;

Function CalcYSizeValue(Const Value:Double):Longint;

They are both now replaced with this equivalent function:

Function CalcSizeValue(Const Value:Double):Longint;

TChart

These Chart methods have been replaced:

Old syntax
New syntax

Chart1.TeeTextWidth
Chart1.Canvas.TextWidth

Chart1.TeeTextHeight
Chart1.Canvas.TextHeight

Chart1.TeeCharHeight
Chart1.Canvas.FontHeight

Chart1.TeeTextOut

Chart1.Canvas.TextOut

Chart1.MarkText(Series1,0)
Series1.ValueMarkText[0]

Chart1.GetLabelsSeries
Chart1.GetAxisSeries

Chart1.XLabelText(Series1,0)

Series1.XLabel[0]

These protected variables have been removed:

Old

New

Chart1.BothHorizAxis

Chart1.TopAxis/BottomAxis

Chart1.BothVertAxis

Chart1.LeftAxis/RightAxis

Legend

The Legend code has been moved to the Chart.pas unit. It was before splitted

into the Teengine and Chart units. That was annoying as for some Legend properties, a casting to TChartLegend had to be done. This is no longer necessary.

Old:

(Chart1.Legend as TChartLegend).ShadowSize := 3;

New:

Chart1.Legend.ShadowSize := 3;

Series

The DrawMark method has changed. Now it uses a "Position" parameter

which contains all coordinates of each Series Mark and Mark Arrow.

The ValuesListCount and ValueList properties have been replaced with

Series1.ValuesLists.Count and Series1.ValuesLists[index] methods.

The TChartValueList.RecalcMinMax method has been deleted. It's no longer necessary.

Global procedures

Global procedures in TeeProcs.pas have been moved to TeCanvas.pas unit:

SwapLongint

SwapDouble

SwapInteger

MaxDouble

MinDouble

MaxLong

MinLong

4) Changes and Fixed bugs
Up
Since 4.0 version

· Fixed crash when showing the editor dialog for a TDBChart component, and not using the DBEditCh unit at the "Uses" clause.

· Added "Color Each" property support for ErrorBar series and checkbox at the editor dialog.

· Replaced the original "OpenGL.dcu" unit with the freeware "OpenGL2.pas" units from Mike Lischke, Alexander Staubo and others.

· These units contain declarations of functions inside OpenGL dll's. Using this new unit adds more OpenGL support (up to version 1.2), and comes with complete source code. See comments in OpenGL2.pas unit for more information.

· Fixed drawing bug in the legend color for Bar series that use the "BarBrush.Bitmap" picture background.

· Fixed drawing bug in Pie series when using the "OtherSlice" property when the Pie values are the result of changing another series type to a Pie.

· Fixed drawing bug in Pie series when in 2D mode, the last slice was zero or a very small number compared to the other slices.

· For Delphi 1, added registration of "TTeeUpDown" component. This is an emulation of Win32 "TUpDown" component for 16bits. It is used by many TeeChart editor dialogs, so you need it if you want to modify them.

· Fixed bug in TChartListBox component when using it on a Main Form and closing the form.

· Fixed bug in Series.Marks new "Position" properties. It crashed when accessing "Position" before the chart was painted for first time.

· Improved calculation of axis Labels width and height. The axis labels anti-overlapping algorithm calculates the label dimensions also when they contain multiple lines of text.

· Fixed problem with axis "Automatic" property. It wasn't modifying the AutomaticMaximum and AutomaticMinimum properties when loading the Form.

· Included the QRChart source code (two small units: TeeQR.pas and QRTeeReg.pas). With these units, non-source code TeeChart Pro customers can install the QRChart component with any QuickReport version.

· Included missing TeeChart.kwf help keywords file for Delphi 1 and 2.

· Fixed bug axis Grid lines not drawing on axis edges in some situations.

· Fixed bug in axis labels. With some combinations of axis labels style, labels separation percent and series data values, only the first label was showing.

· Added JPEG support at "Export Dialog". Through a compiler define (TEEJPEG, see "TeeDefs.inc" file), now the export dialog allows saving charts to JPEG (*.jpg) files. The export dialog unit (TeExport.pas) provides functions to create and save TJPEGImage objects. As the JPEG unit is big in size (+100KB), TeeChart does not use it by default. Modifying the TeeDefs.inc file and recompiling all packages will provide JPEG output both at design-time and run-time.

· Fixed OpenGL 3D rendering when using Surfaces in "WireFrame" mode.

· Fixed changing the printer with the "Setup" button of Print Preview dialog.

· Fixed crash in C++ Builder 3 only in Windows 95 (bug in C++ Builder 3).

Since 3.0b version

· Gantt Series and Delphi 1.0 had a bug when the Series Horizontal Axis was the Chart.TopAxis.

· When drawing the first point of a Line Series in 3D, and having another Series visible with smaller horizontal scales, and not having the Horizontal Axis automatic, the first point of the Line Series was not drawn correctly.

· BarBrush property for BarSeries now allows Bitmap patterns. (Series1.BarBrush.Bitmap := TBitmap.Create)

· The Pie 3D sides are now displayed fine all times. In the 3.0 version, some pixels were not filled correctly.

· The Pie series in 2D, sometimes filled a full pie for very small slices.

· The Canvas (Pen,Brush,Font ,etc) parameters are saved before drawing, and restored after drawing is finished. This fixes a wrong Font color after printing a Chart using PrintPartial method.

· Surface Series in Delphi 1.0, when using custom color palettes, had a memory leak when destroying the Series.

· Stacked Bars with negative values were not displayed correctly.

· The QRChart Frame property was not working.

· Double-clicking on the Chart property of a QRChart didn’t showed the DB datasource properties.

· Zooming a line series with XValues.Order = loNone and negative values did not displayed the line.

· “RectGradient” Bar style was not showing fine for negative bar values.

· Cosmethic bug in EditChar, switching Point to Line, dialogs were overlapping.

· PrintPartial and printing 2 charts on the same page leaved wrong font size and backcolor.

· Logarithmic labels did not show correctly. Now they are displayed properly.

· Polar Series "Pen.Color" property was not working. (SeriesColor worked fine).

· "CloneChartSeries" method (and "AssignValues" Series method), were incorrectly reversing XY values for Horizontal Bar Series.

· Improved TChartScrollBar behaviour.

· After calling "EditChart" dialog in a Chart mouse event, now the zoom rectangle is not displayed.

5) Pending tasks and known bugs
Up
Known bugs:

· Gantt Series and Paging wrong display

· Delphi 3.02 and metafile saving to file. File image is very small.

“graphics.pas” unit in Delphi 3.02 has a bug.

Replace with 3.01 version, or change all ocurrences of “25400” with

 “2540” in graphics.pas unit and recompile.

· Coloured Axis Grid lines not printing on HP lajerset printers.

Many users complain about Axis.Grid lines not printed.

 This happens when Grid lines aren't black color, when using

 the standard Microsoft HP Lajerset drivers.

 Also when using non-solid pen lines (dot-dot, etc)

 Notes:

 * Changing to HP PostScript drivers or to new HP drivers from

 HP's www seem to fix this bug.

 * Works fine with HP Deskjet

· Bug when zooming-in a lot, missing lines. Use OnZoom event to limit zoom.

· Chart Axis and floating "Increment" values (ie: Increment := 27.2) Missing first label.

· Scrolling Chart using right mouse button wrong speed.

· DBChart and modifying records, do not keeps current record. (Fix is at www.teemach.com FAQ)

· ChartScrollBar together with Paging do not works fine.

· Loading *.tee files with "TeeFunctions" do not reconnects functions to series.

· Setting a Candle Series to be a DataSource of another Candle Series gives errors when adding points. Workaround is at TeeFAQ web page.

· Loading a *.tee file using the TeeChart Netscape plugin does not work fine.

Delphi 1.0 specific:

· WinAPI TextWidth, TextHeight metafile rotated labels bug.

 Windows 16bit can not calculate text dimensions properly on metafiles

when font is rotated. Use Chart1.PrintProportional or non-rotated fonts,

or use Delphi 32bit.

· Printing or print-previewing can produce a wrong clipping area.

Set Chart1.ClipPoints and the global TeeClipWhenPrinting and

TeeClipWhenMetafiling variables to True, as a workaround.

16bit applications cannot apply “clipping” to metafiles.

Windows does not support it.

Microsoft fixed this in Windows 95B (OSR2) for 32bit applications.

TTeeOpenGL component specific

· Finish several drawings like Pyramids or Arrows.

· Printing and exporting.

· Editor dialog.

· Pie exploded slices and Pie Marks.

· Bug when maximizing a form containing a chart with OpenGL

· Clipping the chart area

· Gradient and ZoomText not implemented.

Appendix: Virtual Canvas and OpenGL Canvas detailed.

Up
There is a new unit (TeCanvas.pas), which encapsulates a virtual TCanvas component.

All Charts and Series use now an implementation of this virtual TCanvas to draw everything.

Almost all TeeChart units use now the new TeCanvas unit.

This unit is a low-level unit that provides all drawing functions encapsulated into the new TCanvas3D component like zoom, scroll, rotation and elevation.

If you do special customized drawing using the TeeChart Canvas property, you should add this unit to your Forms "Uses" clause. It is safe to use it as it has no other dependencies than the normal Delphi units.

TCanvas3D class

This new Canvas-derived class incorporates support for 3D rotation, zoom, scroll and 3D primitives. It has all methods virtual and abstract, so it means you can not use it directly. You should use a derived class which implements all methods and properties.

Using this new Canvas, now the Chart components can support "plug-in" Canvases. That is, you can change at design-time and /or run-time the "Chart1.Canvas" property, and all drawing will be redirected to the new Canvas:

Chart1.Canvas := TGLCanvas.Create ; <-- switches display to OpenGL

TeeChart Standard includes one of this new virtual Canvas: TTeeCanvas3D

TeeChart Pro includes another one: TGLCanvas (for OpenGL rendering)

Implementing a new virtual Canvas, although not trivial, should be quite easy to do.

You can create, for example, a TDirectXCanvas (for Microsoft's DirectX support) , or a TVRMLCanvas, to generate an ascii file containing VRML (Virtual Reality) graphic instructions. (Or another Canvas class to save drawings to DXF or 3DS file formats, etc).

The new TeeCanvas class applies to the base class TCustomChart, so it works for TChart, TDBChart, TQRChart or any other derived Chart class.

Note: OpenGL DLL's are only for 32bit Windows, so the GLCanvas which uses them.

TTeeCanvas3D class

This is the implementation of the virtual TCanvas3D class used internally.

It is a wrapper around a standard Delphi's TCanvas class. It has many direct calls to Windows GDI to speed up drawing. Should be faster than it was in TeeChart 3.0, and adds the TCanvas3D features like rotation, zoom, etc.

Works with all Delphi and C++Builder versions.

TGLCanvas class in TeeChart Pro

This class resides in a separate unit / package, to not make applications dependant on OpenGL DLL's.

Works only for 32bit Delphi 3, Delphi 4 and C++Builder.

There is a new non-visual component (TTeeOpenGL), that allows you to "connect" an existing Chart to it at design or run-time, and inmediately see the Chart rendered using OpenGL 3D libraries. This component allows you also to define OpenGL specific properties, like Lighting attributes.

Comparison between TTeeCanvas3D and TGLCanvas:

The OpenGL canvas supports full rotation and elevation, while the TeeCanvas allows only 90 degree rotation and 90 elevation (from 270 to 360 degrees).

The OpenGL canvas supports lighting (lights , light colors, positions, etc) while the TeeCanvas draws 3D sides with darker colors to simulate lighting. (What is better depends on every different chart needs).

The OpenGL canvas do not supports metafile creation, so, for printing, a big and fat TBitmap should be created and sended to the printer Canvas, which means it will works only with printers with good memory and sane drivers. Metafiles can not be created, copied to clipboard, saved or printed.

The OpenGL canvas needs the OpenGL DLL's (available in Windows NT, free to download from www.sgi.com both for NT and Windows 95).

Depending on your CPU and video hardware, it might happen the OpenGL Dll's from Sillicon Graphics to be faster than the ones from Microsoft.

The OpenGL canvas supports different Font Sizes and Colors, but it do not supports more than one Font style. All characters of a Font are converted to drawing instructions. This takes quite a lot of memory and CPU time.

The original OpenGL Pascal unit supplied with Delphi and C++ Builder does an static linking of the OpenGL DLL's. This means packages, dll's or executables using the new GLCanvas unit will require the OpenGL dll's to be present at the end-user Windows System directory.

Several freeware or shareware OpenGL API units are available at the Delphi community web sites which offer dinamically linking. TeeChart Pro 4 OpenGL-related source code should compile fine with those units.

